Enter a problem...
Linear Algebra Examples
[4+3i4-2i0-4i]⎡⎢⎣4+3i4−2i0−4i⎤⎥⎦
Step 1
The norm is the square root of the sum of squares of each element in the vector.
√|4+3i|2+|4-2i|2+|0-4i|2√|4+3i|2+|4−2i|2+|0−4i|2
Step 2
Step 2.1
Use the formula |a+bi|=√a2+b2|a+bi|=√a2+b2 to find the magnitude.
√√42+322+|4-2i|2+|0-4i|2√√42+322+|4−2i|2+|0−4i|2
Step 2.2
Raise 44 to the power of 22.
√√16+322+|4-2i|2+|0-4i|2√√16+322+|4−2i|2+|0−4i|2
Step 2.3
Raise 33 to the power of 22.
√√16+92+|4-2i|2+|0-4i|2√√16+92+|4−2i|2+|0−4i|2
Step 2.4
Add 1616 and 99.
√√252+|4-2i|2+|0-4i|2√√252+|4−2i|2+|0−4i|2
Step 2.5
Rewrite 2525 as 5252.
√√522+|4-2i|2+|0-4i|2√√522+|4−2i|2+|0−4i|2
Step 2.6
Pull terms out from under the radical, assuming positive real numbers.
√52+|4-2i|2+|0-4i|2√52+|4−2i|2+|0−4i|2
Step 2.7
Raise 55 to the power of 22.
√25+|4-2i|2+|0-4i|2√25+|4−2i|2+|0−4i|2
Step 2.8
Use the formula |a+bi|=√a2+b2|a+bi|=√a2+b2 to find the magnitude.
√25+√42+(-2)22+|0-4i|2√25+√42+(−2)22+|0−4i|2
Step 2.9
Raise 44 to the power of 22.
√25+√16+(-2)22+|0-4i|2√25+√16+(−2)22+|0−4i|2
Step 2.10
Raise -2−2 to the power of 22.
√25+√16+42+|0-4i|2√25+√16+42+|0−4i|2
Step 2.11
Add 16 and 4.
√25+√202+|0-4i|2
Step 2.12
Rewrite 20 as 22⋅5.
Step 2.12.1
Factor 4 out of 20.
√25+√4(5)2+|0-4i|2
Step 2.12.2
Rewrite 4 as 22.
√25+√22⋅52+|0-4i|2
√25+√22⋅52+|0-4i|2
Step 2.13
Pull terms out from under the radical.
√25+(2√5)2+|0-4i|2
Step 2.14
Apply the product rule to 2√5.
√25+22√52+|0-4i|2
Step 2.15
Raise 2 to the power of 2.
√25+4√52+|0-4i|2
Step 2.16
Rewrite √52 as 5.
Step 2.16.1
Use n√ax=axn to rewrite √5 as 512.
√25+4(512)2+|0-4i|2
Step 2.16.2
Apply the power rule and multiply exponents, (am)n=amn.
√25+4⋅512⋅2+|0-4i|2
Step 2.16.3
Combine 12 and 2.
√25+4⋅522+|0-4i|2
Step 2.16.4
Cancel the common factor of 2.
Step 2.16.4.1
Cancel the common factor.
√25+4⋅522+|0-4i|2
Step 2.16.4.2
Rewrite the expression.
√25+4⋅51+|0-4i|2
√25+4⋅51+|0-4i|2
Step 2.16.5
Evaluate the exponent.
√25+4⋅5+|0-4i|2
√25+4⋅5+|0-4i|2
Step 2.17
Multiply 4 by 5.
√25+20+|0-4i|2
Step 2.18
Subtract 4i from 0.
√25+20+|-4i|2
Step 2.19
Use the formula |a+bi|=√a2+b2 to find the magnitude.
√25+20+√02+(-4)22
Step 2.20
Raising 0 to any positive power yields 0.
√25+20+√0+(-4)22
Step 2.21
Raise -4 to the power of 2.
√25+20+√0+162
Step 2.22
Add 0 and 16.
√25+20+√162
Step 2.23
Rewrite 16 as 42.
√25+20+√422
Step 2.24
Pull terms out from under the radical, assuming positive real numbers.
√25+20+42
Step 2.25
Raise 4 to the power of 2.
√25+20+16
Step 2.26
Add 25 and 20.
√45+16
Step 2.27
Add 45 and 16.
√61
√61
Step 3
The result can be shown in multiple forms.
Exact Form:
√61
Decimal Form:
7.81024967…