Linear Algebra Examples

Find the Norm [[4+3i],[4-2i],[0-4i]]
[4+3i4-2i0-4i]4+3i42i04i
Step 1
The norm is the square root of the sum of squares of each element in the vector.
|4+3i|2+|4-2i|2+|0-4i|2|4+3i|2+|42i|2+|04i|2
Step 2
Simplify.
Tap for more steps...
Step 2.1
Use the formula |a+bi|=a2+b2|a+bi|=a2+b2 to find the magnitude.
42+322+|4-2i|2+|0-4i|242+322+|42i|2+|04i|2
Step 2.2
Raise 44 to the power of 22.
16+322+|4-2i|2+|0-4i|216+322+|42i|2+|04i|2
Step 2.3
Raise 33 to the power of 22.
16+92+|4-2i|2+|0-4i|216+92+|42i|2+|04i|2
Step 2.4
Add 1616 and 99.
252+|4-2i|2+|0-4i|2252+|42i|2+|04i|2
Step 2.5
Rewrite 2525 as 5252.
522+|4-2i|2+|0-4i|2522+|42i|2+|04i|2
Step 2.6
Pull terms out from under the radical, assuming positive real numbers.
52+|4-2i|2+|0-4i|252+|42i|2+|04i|2
Step 2.7
Raise 55 to the power of 22.
25+|4-2i|2+|0-4i|225+|42i|2+|04i|2
Step 2.8
Use the formula |a+bi|=a2+b2|a+bi|=a2+b2 to find the magnitude.
25+42+(-2)22+|0-4i|225+42+(2)22+|04i|2
Step 2.9
Raise 44 to the power of 22.
25+16+(-2)22+|0-4i|225+16+(2)22+|04i|2
Step 2.10
Raise -22 to the power of 22.
25+16+42+|0-4i|225+16+42+|04i|2
Step 2.11
Add 16 and 4.
25+202+|0-4i|2
Step 2.12
Rewrite 20 as 225.
Tap for more steps...
Step 2.12.1
Factor 4 out of 20.
25+4(5)2+|0-4i|2
Step 2.12.2
Rewrite 4 as 22.
25+2252+|0-4i|2
25+2252+|0-4i|2
Step 2.13
Pull terms out from under the radical.
25+(25)2+|0-4i|2
Step 2.14
Apply the product rule to 25.
25+2252+|0-4i|2
Step 2.15
Raise 2 to the power of 2.
25+452+|0-4i|2
Step 2.16
Rewrite 52 as 5.
Tap for more steps...
Step 2.16.1
Use nax=axn to rewrite 5 as 512.
25+4(512)2+|0-4i|2
Step 2.16.2
Apply the power rule and multiply exponents, (am)n=amn.
25+45122+|0-4i|2
Step 2.16.3
Combine 12 and 2.
25+4522+|0-4i|2
Step 2.16.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.16.4.1
Cancel the common factor.
25+4522+|0-4i|2
Step 2.16.4.2
Rewrite the expression.
25+451+|0-4i|2
25+451+|0-4i|2
Step 2.16.5
Evaluate the exponent.
25+45+|0-4i|2
25+45+|0-4i|2
Step 2.17
Multiply 4 by 5.
25+20+|0-4i|2
Step 2.18
Subtract 4i from 0.
25+20+|-4i|2
Step 2.19
Use the formula |a+bi|=a2+b2 to find the magnitude.
25+20+02+(-4)22
Step 2.20
Raising 0 to any positive power yields 0.
25+20+0+(-4)22
Step 2.21
Raise -4 to the power of 2.
25+20+0+162
Step 2.22
Add 0 and 16.
25+20+162
Step 2.23
Rewrite 16 as 42.
25+20+422
Step 2.24
Pull terms out from under the radical, assuming positive real numbers.
25+20+42
Step 2.25
Raise 4 to the power of 2.
25+20+16
Step 2.26
Add 25 and 20.
45+16
Step 2.27
Add 45 and 16.
61
61
Step 3
The result can be shown in multiple forms.
Exact Form:
61
Decimal Form:
7.81024967
 [x2  12  π  xdx ]